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Abstract

Stabilization of the particle beam position with respect to the focusing optics in the third
generation synchrotron light sources is crucial to achieving low emittance and high brightness.
For this purpose, global and local beam orbit correction feedbacks will be implemented in the
APS storage ring.  In this article, we will discuss application of digital signal processing to par-
ticle/photon beam position feedback using the PID (proportional, integral, and derivative) con-
trol algorithm.

1. Introduction

In the third generation synchrotron light sources, of which the Advanced Photon Source
is one, it is very important to stabilize the beam position on the magnetic axis of the quadrupoles
and the sextupoles in order to achieve low emittance and high brightness of the photon beams.
A number of correction dipole magnets will be installed around the APS storage ring to stabilize
the beam against the low frequency vibration, below 25 Hz, from various sources.  The corrector
magnet system will consist of 318 vertical/horizontal field magnets for horizontal and vertical
corrections.

The displacement of the quadrupole magnets due to vibration has the most significant
effect on the stability of the positron closed orbit in the storage ring.  A small displacement of
the quadrupole magnet leads to a large distortion of the closed orbit, and hence, the growth of
the emittance.  The internal sources of vibration include the mechanical motion of the various
components of the ring, such as rotating machinery, pumps, compressors and high vacuum
equipment.  This internal vibration can be reduced by balancing the equipment and isolating the
sources.  The primary external source of the low frequency vibration is the ground motion of
maximum 20 µm amplitude, with frequency components concentrated below 10 Hz.  These low
frequency vibrations can be corrected using the corrector magnets, whose field strengths are con-
trolled individually through the feedback loop comprising the beam position monitoring (BPM)
system.1

For the global beam position feedback, the beam motion is detected by the BPMs located
around the storage ring, and is relayed in digital format from the BPMs to several feedback pro-
cessors.  The feedback processors compare the current positions and the desired positions set by
the control system and compute the necessary kick strengths for the corrector magnets to restore
the beam to the desired positions.  The feedback processors then send commands to individual
corrector magnet power supplies.  The corrected beam positions will then be measured by the
BPMs and the feedback loop continues.

In order to take advantage of the digital interface on the BPM system and the power sup-
plies on the APS, the feedback loops will be implemented using digital signal processing (DSP),



except for the analog front end of the BPM processing electronics.  This will render the feedback
system immune to the RF noise, signal deterioration over the transmission line, and other prob-
lems which characterize analog circuits.

A noteworthy advantage of DSP over the analog circuits is the design of the compensa-
tion filter for the eddy current in the vacuum chamber.  Even though the eddy current effect may
be described by a simple multipole low–pass filter within the bandwidth of interest, designing a
corresponding high–pass filter which cancels the eddy current effect is not simple.  However, it
is relatively easy to design a digital filter using the Z–transform once the transfer function of the
vacuum chamber to the AC magnet field is known.

The remainder of this article consists of four sections.  In Section 2, we will briefly
describe formulation of DSP using Z–transform and discuss the design of digital filters using
analytical formula and data from measurements on analog devices.  In Section 3 the digital feed-
back using the PID control algorithm will be described, and in Section 4 we will discuss its
application to global and local beam position feedback.  A summary and suggestions for future
work will be presented in Section 5.

2. Formulation of Digital Signal Processing

Digital signal processing is now a mature field in the theory of controls and a large body
of literature is available.  Since we are interested in the application of DSP rather than develop-
ment of a new theory, we will outline in this section the principles and results found in Ref. 2.
Then we will discuss the application of DSP to the open loop compensation for the eddy current
effect in the vacuum chamber.  This compensation filter will be incorporated in the closed loop
feedback system as discussed in Sections 3 and 4.

2.1 Z–transform and Digital Filters

Just as the Fourier transform and the Laplace transform are important in continuous–time
signals and systems, Z–transform facilitates the analysis of discrete–time signals and systems.
Given a sequence of discrete–time signals {xn}, its Z–transform is defined by

X(z) � �
�

n���

xnz�n (2.1)

where z is a complex variable and plays a role similar to that of the variable s in the Laplace
transform.  {xn} is called the inverse transform of X(z).

A large class of linear time–invariant discrete–time systems can be described by the lin-
ear constant coefficient difference equation

yn � �

M

k�0
akxn�k � �

L

k�1
bkyn�k , (2.2)

where {xn} is the input, {yn}  is the output, and a0, a1, ... , aM, b1, ... , bL are constants that charac-
terize the system.  A digital filter with bk = 0 for all values of k is called a finite impulse
response (FIR) filter.  Otherwise, it is called a infinite impulse response (IIR) filter.  Applying
the Z–transform to Eq. (2.2), we obtain

Y(z) � H(z)X(z) (2.3)

where
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X(z) and Y(z) are the Z–transforms of {xn}  and {yn}  and H(z) is the transfer function of the fil-
ter.
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Fig. 2.1: Processing of an analog signal using a digital filter.

The Z–transform in Eq. (2.1) is closely related to the Fourier transform.  Consider apply-
ing the digital filter represented by the coefficients {an, bn}  to processing of an analog signal as
shown in Fig. 2.1.  Suppose the sequence {xn}  was obtained by digitally sampling an analog sig-
nal x(t) with a sampling rate of Fs = 1/T, and let Xa(ω) be the Fourier transform of x(t).  We will
call ω the analog frequency.  Now, let us introduce the digital frequency λ, which has the range
(–π, π).  Using xn = x(nT) in Eq. (2.1) with z = e–iλ, it can be shown that

X(e�i�) � �
�

n���

x(nT) ein�

(2.5)

  � Fs �
�
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Xa(Fs(�� 2�k)) . (� � � � � �)

Equation (2.5) is the relation between the analog spectrum Xa(ω) and the digital spectrum
X(e–iλ), which exhibits a periodicity of 2π in λ.  Suppose the original signal x(t) was properly
bandlimited such that

   Xa(�) � 0, |�| � �Fs , (2.6)

then the various terms in the summation in Eq. (2.5) are non–overlapping.  However, as the sam-
pling frequency decreases below the level at which Eq. (2.6) holds, overlapping will increase
and cause aliasing error.  Therefore the sampling frequency Fs determines the degree of overlap-
ping among the various components in the summation in Eq. (2.5) and must be determined care-
fully for a given input signal.  The minimum sampling frequency for which Eq. (2.6) holds is
called the Nyquist frequency.

Given the output sequence {yn}, the analog spectrum Ya(�) from the reconstruction filter
with the sampling time T = 1/Fs can be expressed as

   Ya(�) � G(�)Y(e�i�T) . (2.7)

G(ω) is the frequency characteristic of the reconstruction filter, which has the time response g(t)
such that



�
�
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dt g(t)� G(0)� T . (2.8)

Therefore, using Eq. (2.5) and the relation Y(z) = H(z)X(z), we obtain

    Ya(�) � FsG(�)H(e�i�T) 

�

k���

Xa(�� 2�kFs) . (2.9)

The role of the reconstruction filter G(ω) is to eliminate the undesirable high frequency compo-
nents in the summation of Eq. (2.5).  Ideally, a filter that has the frequency characteristic

G(�) � 	 T
0

|�| � �Fs

|�| � �Fs
(2.10)

should be used.  Assuming the sampling frequency Fs to be larger than the Nyquist frequency so
that there is no significant overlap in the summation of Eq. (2.9), we have

  Ya(�) � 	 H(e�i�T)Xa(�)
0

|�| � �Fs

otherwise (2.11)

This is the fundamental relation for the digital filtering of analog signals.  It shows that the digi-
tal filter transfer function H(z) performs the spectral modification of the input signal x(t).  From
Eqs. (2.5) and (2.11), we find that the digital frequency λ is related to the analog frequency ω by

�� �T. (2.12)

The design of digital filters can be broadly categorized into two classes and proceeds as
follows.   In one case, the design is based on an analog filter with known frequency characteris-
tics with an appropriate analog frequency to digital frequency transformation ω = ω(λ).  When
the analytic form of the corresponding analog filter transfer function Ha(ω) is known, a proper
frequency transformation between ω (–∞ < ω < ∞) and λ (–π < λ < π) is found first.  Then from
z = e–iλ, ω can be expressed in terms of z, and the digital filter transfer function H(z) is obtained
by substituting ω with ω(z) in Ha(ω).   The reason for doing this is that the relation between λ
and ω in Eq. (2.12) is not always the convenient form to work with, since an analog filter trans-
fer function Ha(ω) which is rational in ω will produce a digital transfer function H(z) which is
not rational in z–1 as shown in Eq. (2.4).

In the other case, when only |Ha(ω)| is known at various frequencies, a computer–aided
method is applied to obtain H(z) in the factored form (cascade form).  In the following subsec-
tions, we will show some examples of digital filter design and its application to the open loop
compensation for the eddy current in the APS storage ring vacuum chamber.

2.1 Low–Pass Filter

In this subsection, we will consider a low–pass filter characterized by the transfer func-
tion

Ha(�) �
�c

�c� i�
 , (2.13)



where ωc (= 2πfc) is the angular cutoff frequency and is the inverse of the decay time τ.  We
chose this function for later use on bandlimiting the closed loop feedback.  To transform ω to the
digital frequency λ, we use

    � tan��c
2
� � �c tan��

2
� (2.14)

From Eq. (2.12), Λc is given by

  �c � �cT . (2.15)

This will map the range (–π, π) of λ into (–∞, ∞) of ω, and when ω is equal to ωc, λ is equal to
Λc.  When ωc is much smaller than the sampling frequency, that is, ωc << Fs, the relation λ = ωT
is restored.  Inserting Eq. (2.14) into Eq. (2.13) and using z = e–iλ, we obtain

H(z) � Ha(�(z)) � 1� z�1

1� c� (1� c)z�1 , c� cot��c
2
� . (2.16)

This is an infinite impulse response (IIR) filter.  From Eq. (2.4), we obtain

   a0 �
1

1� c
, a1 �

1
1� c

and b1 �
1� c
1� c

 . (2.17)

The digital filter obtained by substituting these coefficients in Eq. (2.2) will have the characteris-
tic of a low–pass filter of bandwidth fc.

2.2 Computer–Aided Design of Digital Filters

When an analytic form for the desired transfer function is not known, we must resort to a
numerical method to find out the filter coefficients, a’s and b’s, from amplitude responses speci-
fied for the filter.  Given a set of amplitude responses An, 1 ≤ n ≤ N, for digital frequencies λn,
we will obtain the transfer function in the form

H(z) � C�
K

k�1

1� f kz�1 � gkz�2

1� ckz
�1 � dkz

�2 . (2.18)

where the real constants C, ck, dk, fk, gk, (1 ≤ k ≤ K) are to be determined, so that the amplitude
of the resulting H(z) approximates An at zn = e–iλn as closely as possible.  The algorithm for find-
ing these constants is described in Ref. 2, together with the source code for the computer pro-
gram.

2.3 Digital Compensation of Analog Filters

In the previous section we discussed the analog characteristic of signals processed by a
digital filter and it was shown that a digital filter can be designed such that its response closely
matches that of an analog filter.  Since multiple digital filters connected in series can be repre-
sented by the product of the corresponding transfer functions as seen from Eq. (2.3), it is pos-
sible to design a digital filter which is the reciprocal of a given analog filter.  Suppose H(z) is the
transfer function of an analog filter in z–space, which is written as in Eq. (2.4).  Then a digital
filter with the transfer function equal to H(z)–1 given as
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(b0 � 1) (2.19)

will closely cancel the effect of the analog filter, so that the combination of the two filters equals
unity.

A digital compensation filter is useful in the application of the closed loop feedback with
an analog device with frequency–dependent attenuation (or gain) and phase shift.  Large attenua-
tion of the signal decreases the open loop gain and the effectiveness of the feedback, and a large
phase shift exceeding 90° can make the feedback loop oscillatory or unstable.  By canceling out
these two effects, a digital compensation filter inserted in front of the offending analog device
will make the feedback loop much more effective and stable.

One such example is the effect due to the eddy current in the vacuum chamber, which
flows in the direction canceling the original magnet field and decreases not only the field inside
the vacuum chamber but also the field outside in the vicinity of the vacuum chamber.  The cor-
rector magnet field controlling the beam position is strongly attenuated and shifted in phase,
which could result in oscillatory behavior or loss of the stored beam.

3. Closed Loop Feedback with DSP

In designing the digital signal processing scheme for closed loop feedback, the following
factors must be considered.

� Rise–time

� Overshoot

� Settling time

� Control effort

� Noise throughput

The rise–time of the output signal from the feedback loop in response to the input step
pulse is related to the bandwidth of the control, and generally the shorter the rise–time, the bet-
ter.  However, a short rise–time can lead to overshoot in the output, and a compromise is needed
to balance the two.  This can be achieved by limiting either the controller gains or the slew rate
of the output, which, in effect, is tantamount to limiting the bandwidth.

The closed loop feedback control can also produce oscillation or ringing in the output
with a finite settling time.  This is generally the result of too low a sampling frequency compared
to the bandwidth of the input or the noise.  It also depends on the structure of the feedback
scheme.  Ideally, the sampling frequency should be large enough such that the output from the
feedback loop is critically damped in response to the input step pulse.

The control effort is the signal applied to the device to be controlled.  For beam position
feedback, it will be the output voltage or current of the corrector magnet power supply.  This
factor must be considered together with the spectrum and the desired throughput of the noise in
determining the controller gains and the bandwidth of the feedback loop.



The four parameters discussed above, the controller gains, bandwidth, sampling fre-
quency, and the structure of the feedback scheme, determine the performance of the closed loop
feedback.  In the following sections, we will discuss these parameters and the application of
closed loop feedback to the beam position control using DSP.

3.1 Digital Signal Processing Using PID Control
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Fig. 3.1: Schematic diagram for the closed loop feedback with PID control.

In this section, we will analyze the PID (proportional, integral, and derivative) control.
In Fig. 3.1 is shown the schematic diagram for PID control.  The various symbols (sn, yn, tn, un,
vn, wn, pn, in, dn) denote the digital signals that corresponds to the n–th cycle.  sn is the control
signal for the desired beam position and yn is the measured beam position.  The error signal sn –
yn, after being passed through a digital band limiting filter with transfer function B(z), is modi-
fied by the three controllers, proportional, integral, and derivative.  For stability reasons, the
band limiting filter is a single–pole low pass filter.  This signal is passed through another digital
filter which compensates for the effect of the magnet and the vacuum chamber.  The corrector
magnet is activated accordingly and external perturbation wn is added to the beam position.  One
feedback cycle ends with the reading of new beam position yn+1.  In the following discussion, we
assume for simplicity that the magnet and vacuum chamber effects are exactly canceled by the
compensation filter, that is, CD = 1, and that the transfer function of the power supply is equal to
unity.

The controller gains KP, KI, and KD, are yet to be determined to satisfy the feedback con-
trol specifications.  In order to find the overall transfer function of the feedback loop, we write
the relations between the z–transforms of various signals as they pass through each component.
Let S(z) be the z–transform of {sn}, Y(z) the z–transform of {yn}, and so forth.  Then we have



    T(z)�B(z) (S(z)� Y(z)) ,

U(z) � T(z) �KP� KD (1� z�1) �
KI

1� z�1
� , (3.1)

       zY(z)� U(z)� W(z) .

From these relations, we obtain

Y(z) �
F(z)B(z)

z� F(z)B(z)
S(z)� 1

z� F(z)B(z)
W(z) . (3.2)

where

       F(z)� KP� KD (1� z�1) �
KI

1� z�1 . (3.3)

Equation (3.3) is the expression for the output from the closed loop feedback using PID
control with the control signal S(z) and the perturbation W(z).  At DC with finite KI, F(z)
becomes infinitely large and the noise transfer function Y(z)/W(z) with S(z) = 0 is equal to 0,
which is the characteristic of the integral control.  However, the gain parameter KI must be kept
small to prevent oscillation in the output.  The control action in the medium and high frequency
regions is dominated by the proportional and derivative control terms.  The derivative control
term is zero at DC, and increases to 2KD as the digital frequency λ approaches π.

Figure 3.2 shows the amplitude and phase of the noise transfer function with PID control
with parameters KP = 5, KI = 0.25, KD = 2, Fs = 4 kHz, and fb = 30 Hz.  At 20 Hz, the noise is
attenuated by 17.9 dB and the phase is advanced by 83°, while at 60 Hz, the noise is attenuated
by 8.5 dB and the phase is advanced by 67°.  The response of the feedback loop when a step
impulse is applied to the control signal is shown in Fig. 3.3, using the same parameters as in Fig.
3.2.  The rise time at 90% of the control level is approximately 2 msec.  The output y(t) shows
neither noticeable overshoot after the initial rise nor oscillation while settling to the control level.
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Fig. 3.2: Noise transfer function Y(z)/W(z) with S(z) = 0 as a function of frequency for
closed loop feedback using PID control: (a) amplitude and (b) phase.  The parameters used

were: KP = 5, KI = 0.25, KD = 2, Fs = 4 kHz, and fb = 30 Hz.
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Fig. 3.3: Step impulse response using PID control.  (a) shows the response of the feedback
loop to control step impulse.  (b) shows the required power supply output for a 5 Hz band-
width load.  The parameters used were: KP = 5, KI = 0.25, KD = 2, Fs = 4 kHz, and fb = 30

Hz.

However, a very robust power supply is required if the bandwidth of the device under
control is small, such as a corrector magnet and vacuum chamber.  This is due to the action by
the compensation filter feeding the power supply control input.  Figure 3.3(b) shows the required



power supply output as a function of time if the bandwidth of the load is 5 Hz.  The peak output
immediately after the step impulse is 42.7 in units of the control level.

4. Beam Position Feedback

Both the global and local correction schemes will be used to stabilize the positron and
photon beams.  The global correction reduces the orbit everywhere around the ring using several
correctors (about 40).  The local correction consists of bumps in the photon source regions.  The
orbit is expected to be almost fully corrected at these locations.  Both global and local correction
will have the same bandwidth, since the correctors employed have the same frequency character-
istics.  In the following discussion we will assume that the local feedback loops are decoupled
from each other and from the global feedback loop.  In reality, this is not true, and imperfect
isolation of the local feedback loops will lead to  interference and deterioration of the orbit sta-
bility.

If corrector strengths were unlimited, one would need to operate only local bump feed-
back to stabilize the photon beam.  Since we do not care what happens to the electron orbit out-
side the local bumps (as long as the orbit allows good enough lifetime), the global correction
could be omitted.  However, including a global correction will always partly relieve the burden
of the local bump correction.  For instance, the global correction could be specified to remove
80% of the distortion around the ring, including the photon source regions.  Therefore, a local
bump correction specified to correct a 100–µrad 25–Hz orbit distortion would be sufficient in a
ring where the orbit motion at 25 Hz is of the order of 500 µrad.  The parameters for the global
and local correction systems are listed in Table 4.1.

4.1 Global Feedback

Displacement of the particle beam position due to a kick of �yc� by a corrector magnet is
given by3

y � �yc�
�c��

2 sin(��)
cos�|�� �c|� ��� , (4.1)

where β is the beta function at the beam position monitor observing the beam motion y,  �yc� is
the angular deflection caused by the corrector magnet, and βc is the beta function at the corrector
magnet.  φ and φc are the betatron phase at the beam position monitor and the corrector magnet,
respectively, and ν is the tune.  Equation (4.1) relates the corrector strength and the beam dis-
placement, both of which are measurable.  Since the angle of deflection �yc� is proportional to

the magnetic field in the vacuum chamber, the beam position xi measured by the i–th beam posi-
tion monitor and the corrector magnet field Bj inside the vacuum chamber are linearly related.
From Fig. 3.1, we see that Bj is also proportional to the signal un, which is modified by the com-
pensation filter to cancel the effect of the vacuum chamber eddy current before being sent to the
magnet power supply controller.



Table 4.1: Specification of the beam position correction systems.
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁGlobal DC

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁGlobal AC

ÁÁÁÁÁÁ
ÁÁÁÁÁÁLocalÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Orbit measurement device

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

All of the RF
BPMs

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

RF BPMs at
sources only

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

X–ray photon
BPMs

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Correctors
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

All correctors
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Subset of
correctors

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Local bump

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Specified orbit measure-
ment resolution

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

25 µm
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

25 µm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Not specified

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Achievable resolution

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

5 µm

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

5 µm

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

1 µm
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

Required range of orbit
correction

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

± 20 mm
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

± 500 µm
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

± 100 µm

Using the notation of Section 3, we write

vi
n � Qi

ju
j
n . (1� i � M, 1 � j � N, summation over j) (4.2)

or, in vector notation,

vn � Q � un . (4.3)

The indices i and j denote the i–th BPM and the j–th corrector magnet, respectively.  We will
assume that there are unequal numbers of BPMs (total of M) and corrector magnets (total of N).
The matrix Q is a constant matrix, has dimensions M × N and represents the correlation between
the corrector magnet strengths and the beam motion at selected BPM locations.  The elements of
Q can be obtained by measuring the beam motion yi with given DC signal uj, assuming that the
noise wi is negligible compared to yi.

Equation (4.2) indicates that the correction of beam position at a given location is the
result of a simultaneous action by N corrector magnets.  Now that there are M such BPM loca-
tions where the desired beam positions are specified, a set of linear equations like Eq. (4.2)
needs to be solved to obtain the strength for N corrector magnets.  This is equivalent to inverting
the matrix Q and can be done by using the well–known technique of “singular value decomposi-
tion (SVD)”.4  This technique will allow us not only to solve for the corrector magnet strengths
but also to know in advance whether a given set of BPMs and corrector magnets render the
matrix Q singular or not.

 When M ≤ N, there exists a matrix R of dimensions N × M that pseudo–inverts Q.  That
is,

    Q � R � 1 , (4.4)

where 1 is a unit matrix of dimensions M × M.  In this case the BPMs are decoupled from each
other and it is possible to control the beam position at each BPM independently.  While the
matrix R is not necessarily unique, SVD picks the matrix that corresponds to the minimum con-
trol effort.

On the other hand, when M > N, the pseudo–inverse matrix R obtained using SVD does
not satisfy Eq. (4.4).  It simply guarantees that the difference | Q ⋅ R ⋅ t – t | for an arbitrary vec-



tor t is at its minimum.  In this case, the BPMs are not decoupled from each other and it is in
principle impossible to control beam position at individual BPMs.  The coupling between BPMs
could also degrade the closed loop stability.  For this reason, the use of more BPMs than correc-
tor magnets for global beam position feedback is not recommended.

Since the location of the matrix R determines the number of PID controllers and com-
pensation filters (CF), and therefore, the turnaround time of the feedback loop, the dependence
of the these components on corrector magnets and vacuum chamber and the relative sizes of M
and N must be considered in deciding where to put R.  If M < N, R is placed in front of the com-
pensation filter (CF), and if M ≥ N, R is placed after the last channel–dependent component.
The bandlimiting filter should still precede R in order to minimize the possibility of overflow
during computation.  Basically, this follows from Eq. (4.4) and the fact that the matrix R trans-
forms the M input channels from the BPMs into the N output channels to the corrector magnets.
Assuming that the bandlimiting filter and the PID controllers are the same for all input channels,
we obtain a relationship similar to Eq. (3.2) for M ≤ N,

   Yi(z) �
F(z)B(z)

z� F(z)B(z)
Si(z)� 1

z� F(z)B(z)
Wi(z) . (1� i � M) (4.5)

In Fig. 4.1 is shown an example of such an arrangement for M = 4 and N = 8.

BLF CF PID
Controller

R To
P/S �s

y (from BPM)
BLF:  Bandwidth Limiting Filter
CF:  Compensation Filter
P/S:  Corrector Magnet Power Supply
BPM:  Beam Position Monitor

Fig. 4.1: Schematic of the global beam position feedback using DSP with the pseudo–in-
verting matrix R for M = 4 and N = 8.  The controller gains are constant for all channels.

4.2 Local Feedback

The local feedback loops will employ four–magnet bumps to control both the position
and the angle of the x–ray source point as shown in Fig. 4.2.  For the bending magnet radiation,
the source point is placed at the center of the main dipole, while for the insertion device, the
radiation is along the extension of the line adjoining the beam position at the location of the
bump magnets 2 and 3.

The position and the angle of the radiation source are monitored using a set of two x–ray
photon beam position monitors at the end of the beam line, which register the photon beam posi-
tions (yb1 and yb2) at longitudinal locations xb1 and xb2.  In the following discussion we will dis-
cuss the case of the insertion device radiation and will ignore for simplicity the effect of the vac-
uum chamber eddy current which results in local bump closure error.  The case of the bending
magnet radiation can be done in a similar manner.  Consider the relation between the δa and δb,
the strengths of the three–magnet bumps a and b, and the photon beam positions yb1 and yb2,5



��a

�b
� � (DA)�1�yb1

yb2
� , (4.6)

where

A � �2�3� sin (�3 � �2) �
K3a

0
0

K2b
� (4.7)
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Fig. 4.2: Four–magnet bump to control the position and the angle of the x–ray radiation,
which comprises the two three–magnet bumps a (magnets 1, 2, and 3) and b (magnets 2, 3,

and 4).  x and y are coordinates for the longitudinal distance and the beam position,
respectively.

and

    D �
1

xs3� xs2
�
�

�

� �xb1� xs3�

� �xb2� xs3�

�xb1� xs2�

�xb2� xs2�
�
	



 . (4.8)

K3a is the relative weight of the magnet 3 in the bump a, and K2b is the relative weight of the
magnet 2 in the bump b.  �2 and �3 are the �–function values at the bump magnet locations 2 and
3, and �2 and �3 are the corresponding betatron phases.  In order to have the bump closure, the
relative weights Kij (i=1,2,3, and j=a,b) must satisfy

     
K2a
K1a

� �
�1

�2
� sin (�3 � �1)

sin (�3 � �2)
,

K3a
K1a

�
�1

�3
� sin (�2 � �1)

sin (�3 � �2)
(4.9)

and

     
K3b
K2b

� �
�2

�3
� sin (�4 � �2)

sin (�4 � �3)
,

K4b
K2b

�
�2

�4
� sin (�3 � �2)

sin (�4 � �3)
(4.10)

Equation (4.6) relates the strength of the bump magnets and the photon beam motion and
is the basis of the closed loop feedback.  The schematic is shown in Fig. 4.3.  The vector s is the
control signal for the photon beam position vector y (yb1 and yb2),
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Fig. 4.3:  Schematic of the local beam position feedback using DSP.

whose difference is fed to the digital signal processor.  The output from the matrix (DA)–1 is the
three–magnet bump strength �a and �b, which is split to the four power supplies for the bump
magnets.

5. Summary and Suggestions for Future Work

In this note, we reviewed formulation of digital signal processing based on Z–transforms
and the PID control algorithm, and discussed its application to the global and local beam posi-
tion feedback in the APS storage ring.  The emphasis was on the compensation of the eddy cur-
rent induced in the thick aluminum vaccum chamber of the APS storage ring by the corrector
magnet field to cancel the external perturbation.  The digital filter discussed in Section 2 for the
compensation of the eddy current will not cover all frequencies.  This non–ideal behavior will
result in limitation of the controller gains (KP, KI, and KD), high sampling frequency Fs, and
reduced bandwidth of the feedback loop.  The optimization of these parameters with a safety
margin for stable operation requires measurement of the effect of the vacuum chamber eddy cur-
rent up to 1 kHz (with Fs=4 kHz).  More analytical studies on the PID control will also be
needed.

The eddy current in the asymmetric vacuum chamber will also induce quadrupole and
sextupole components in the magnetic field applied on the particle beams.  Even though the
quadrupole field can be minimized by symmetrizing the geometry, e.g., attaching a piece of the
vacuum chamber cut from the photon exit channel to the antechamber, the sextupole component
still remains.  This will result in a bump closure error at the point of local correction, which may
not be negligible in the frequency range (DC to 25 Hz) of our interest.  A detailed discussion of
this problem and its solution will be presented separately.
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